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Finite-Element Method with Edge

Elements for Waveguides Loaded with

Ferrite Magnetized in Arbitrary Direction
Lezhu Zhou and Lionel E. Davis, Fellow, IEEE

Abstract-In this paper, finite-element method (FEM) formu-
lations with edge elements for directly calculating the phase con-

stants of ferrite-loaded waveguides with arbitrarily magnetized

directions are presented. Dispersion characteristics are calculated
for the partially-filled ferrite rectangular waveguide structure,
where the dc field is in any arb]trary direction includhg parallel
to any of the three axes. The variation of phase constants with the

direction of dc magnetic field is illustrated. In order to solve the
quadratic eigenvalue equation, which appears in the case where
the magnetized direction is not parallel to the propagation, a

simple and effective approach is proposed with no increase in

the size of the matrices.

I. INTRODUCTION

I T IS well-known that traditional microwave guides loaded

with ferrite materials are used in a number of microwave

devices, such as phase shifters, resonators, circulators and

tunable filters [1], [2]. Recent research has demonstrated

that coupled planar waveguides and other structures loaded

with ferrite layers magnetized parallel or perpendicular to the

direction of wave propagation exhibit behavior, which might

be used for novel microwave components at higher frequencies

[3]-[6]. Therefore it is necessary to develop a method for the

analysis and design of these kinds of devices with arbitrary

magnetization direction,

The feature of ferrite materials is that the permeability is a

tensor, which always depends on the operating frequency and

applied dc magnetic field. This results in difficulties of analysis

and calculation. Analytic solutions are known only for a few

simple geometry structures, such as rectangular and circular

waveguides with ferrite slab or rod, and the dc magnetic field

is limited to the wave-propagation or basic coordinate-axis

directions [7], [8]. For structures with arbitrarily magnetized

ferrite numerical methods are necessary, and in any case a

generally applicable approach is desirable.

The finite-element method (FEM) is an effective and ac-

curate numerical method suitable for complex geometry and

material properties, which has been widely used in this area.

Konrad first proposed a three-component variational formu-

lation for anisotropic media [9]. Its eigenvalues and eigen-

vectors correspond to the modal eigenfrequencies and three-
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component vector fields of waveguides. Wang and Ida suc-

cessfully applied this formulation with edge elements to study

the resonant frequencies of ferrite loaded cavities [10]. The

so-called spurious mode interference, which usually occurs in

FEM with vector variational formulation, has been eliminated

by using edge elements or other approaches [11]. However, the

formulation with frequencies as the eigenvalues is not con-

venient for solving waveguide problems. Therefore methods

of directly calculating phase constants have appeared in the

recent literature. Dillon, Gibson, and Webb applied FEM with

covariant projection elements to the analysis of ferrite loaded

waveguides, where the applied dc magnetic field is parallel to

the propagation direction [12]. Anderson and Cendes published

a vector finite solution of ferrite loaded waveguides, where

the dc magnetic field is parallel or transverse to the direction

of propagation [13]. Their method reduced the quadratic

eigenvalue equation to a linear one, but not quite twice as large.

It may also be pointed that Angkaew, Matsuhara, and Kumagai

analyzed the waveguide with transversely magnetized ferrite

early in 1987 [14]. But they used their own variational function

and shape functions with four field components (et and ht)

and more degrees of freedom than others.

In this paper, FEM formulas for both E and H fields with

edge elements for directly calculating the phase constants of

ferrite loaded waveguides with arbitrarily magnetized direction

are presented for the first time. The dispersion characteristics

are calculated for an example structure, where the dc field

is arbitrarily directed as well as parallel to the three axes.

In order to solve the quadratic eigenvalue equation, which

appears in the case of the magnetized direction not parallel to

the propagation, a simple and effective iteration approach is

proposed with no, increase in the size of the matrices.

II. BASIC FORMULATIONS

A. Permeability Tensor of Arbitrarily-Magnetized Ferrite

Ferrite is a kind of anisotropic material, in which the

magnetic induction B is not parallel to the magnetic field H.
The relationship between them can be expressed in terms of

a permeability tensor, i.e.,

B = Ko[p]H. (1)
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When the applied dc magnetic fteld is parallel to the z-axis, z
the relative permeability tensor is given by

[u]=
P –jtf o

jt6 ~ o
1001

with

(2)

where M. and ~ have their usual meanings [7].

Now assuming the applied dc field HO is directed along an
Fig. 1. Partially-filled ferrite rectangular waveguide cross section with

applied dc magnetic field in an arbitrary direction.
arbitrary direction, i.e., (HO, z) = 0, (HOZV, x) = pas shown

in Fig. 1, it can be proved by using coordinate transformation

that B = WO[~] Id remains valid. but [u] become a full matrix B. Finite-Element Formulas with Edge Elements

of the form:

[i=

where

#11 P12 P13 1
p,~l p,22 p,23

pJ31 #’32 p33 1

pll = p(cos2 8. cos2 p + sin2 p) + sin2 9. cos2 p

plz=(l– ~)sin20. sinp. cosp –jKcos O

/Lls=(l –~)sin O.cos@. cosp+jti sin O.sinp

pzl=(l– fl)sinzd. sin~cosq +j~cosd

VM = W(cos2 O . sin2 p + COS2 p) + sin2 O sin2 p

Mzs=(l– fl)sinf lcosd. sinp-jfi sin~cosp

K31=(l–M)sin@cos~”cosw- j~sin~”sinq

Usz=(l– fl)sind .cosd. sinp+jm sind. cosp

K33 = P sin2 O + COS2 0,

We consider a waveguide loaded with ferrite of the relative

permeability tensor of the (3) and assume that the EM fields in

(3)
the waveguide vary as exp [j (wt – /lz)]. The applied magnetic

field is assumed to be along an arbitrary space direction. From

Maxwell equations, the following vectorial wave equation and

corresponding variational function can be obtained in the form

(3.1)
v x ([A]v xG) –k:[B]G =0 (5)

(3.2) and

(3.3)

(3.4)
F(G) =

//
~,, {(v x G)* [A](v x G)

(3.5) – k: G*[l?]G} dxdy (6)

(3.6)
where ko = w/c is the free-space wave number. s is the

(3.7) waveguide cross section and the asterisk denotes complex

(3.8) conjugate, and

(3.9)

Obviously, the above expression is in agreement with (2) when

HO II z, i.e., O = OO.When HO is in the zy plane, i.e., O = 90°,

and when HO is in the xz plane, i.e., p = 0° it has the forms,

respectively

[i=

[

M sin2 p + COS2 p

(1 – u,) sin p.cos Q

–jK . sin p

[P] =

[

K cos2 0 + sin2 O

jK . Cos 0

(1-p) sin6Jcos0

(1–~)sinpcosp j~sinp

\L cos2 p + sin2 p –j/f . Cos @

jt$ . Cos p p 1
(4.1)

–j~ cos d (1 – ~) sin O . cos 19

K 1–jtt.sin @

j~ . sin 0 p sin2 19+ COS2 O

(4.2)

Equation (4.2) is identical to (2.51) in [2]. It should be pointed

that the permeability tensor (3), generally speaking, is full and

complex, and the inverse matrix also is full and complex.

[A] =s-’[l],

[El] = (p] for G = H

[A] = [~]-1,

[B] =e[I] for G = E. (6.1)

In order to discretize the integral equation (6), the cross

section of the waveguide is divided into a finite number of

triangles. In each triangle the material properties are constant

and the magnetic or electric field G (z, g, z) can be expressed
in terms of the field values at the vertices and edges, i.e.,

G(x, JJ, Z) = [G. (z, y)x + Gg(z, Y)j + G,(x, y)z]

. exp (–jp2) (7)

with



ZHOU AND DAVIS: FINITI-ELEMENT METHODWITHEDGEELEMENTSFORWAVEGUIDES 811

G,(z, y) = ~gzijh(q Y) (7.3)

‘i=l

where Ai is the scalar shape function and defined in terms of

the Cartesian coordinates

1[1
111-11 1

xl X2 x3 x

.Y1 Y2 !J3 Y

1[1
-dlCilzdly1
dz dz. dzv X (8)

-d3 d3z dsy y

where

(8.1)

“Sirllln

Fig. 2.
triangle

3

The relation betweennumbersof verticesand endsof edgesfor a
element.

[

aiz

aiv

bi

——

=

‘alv + blx
azv + bax
-asv + bqx 1

didjz – djdiz
didjy – didiy

-dizdjy – djzdiy 1
(10.2)

(10.3)

U VI Y2 Y3 ]) where (z, j) = (1, 2) or (2, 3) or (3, 1). From (7)–(10), one

can also obtain
where (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2).

Wi(x, g) = TV,. (Z, y)x + TViv(x, y)y is the vectorial

shape function corresponding to the ith edge and defined in [~1 “-[$3
terms of the scalar shape functions which are related to the

= [bl, bz, bs] (11.1)

two ends of the edge

[1~ =[dI., dzz, ds.] (11.2)

Wi(X, y) = ~(il)(~, Y) V ~(i2)(x, Y)

[1; =[all,,dz,,dsv]. (11.3)
– A(i2)(% Y) v +il)($> Y) (9)

where, v is a gradient operator. The relationship between the

number of vertices and the ends of edges are shown in Fig. 2.

g,~ is the z-component of the field G at the ith vertex. gt, is the

linear integral of the field along the zth edge. Components of

the vector W,(x, y) can be written in matrix form, as follows

[1Wlz
[w.]~ = W2.

W3.

[1

d2.Al – dl.k

= d3.A2 – dz.A3

dl.A3 – d3.Al

[1
alz–bly

= a2z – bzy (10.1

a3Z – b3y

[W,]T =

——

Equations (7)–(7.3) can also be rewritten as the matrix form

[1

G= G; exp (–j~z)

G,

=; ][ 1
[Wz]M [g,]e~p(-j/3,z)
[fil fj [9.1

with

[9tl = [9tl, 9t2> 9t31T

[9ZI = [9Z1, 9Z2, 9Z31T.

Taking the curl of (12), we obtain

[111
~P[w?J ~g

[1

VXG= –j@[w’.] –.7’ ~

[–1

z t)wv
[0]

[1
. [9tr[g ~ exp (–j~z).

z

(12)

(12.1)

(12.2)

(13)
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Substituting (12) and (13) into the variational function (6),

using the Ray Ieigh–Ritz procedure, i.e., making it stationary

with respect to all the independent variables gt and g=. the

variational function (6) in the integral form can be discretized

and transformed to a matrix eigenvalue equation with the

frequency squared as the eigenvalue

(14)

where [gt] and [g,] are column vectors, which consist of all

the independent unknowns gt, and gzi of the cross section; the

matrices are sparse but not symmetric, and their elements are

defined as follows:

-[WV]T[lT’z]a~~ - [1477]T[JWV]UZ,} dz dy (15,1)

(15.2)

(e)

[1 [1+ ~ ‘ [WZ].22 - ~ [Wv]a2~

- [aT’w.’a’2}dx@T

‘$)=;// ‘~{-[;]’ [g] al,

+[~]T[~]a23}dxdy

(15.4)

(15.5)

(15.6)

(15.7)

‘ZZ=~// {[~]”[~]al

‘H%la”- H%la”
- [$#]T[~]012}dzdy (15.8)

B,, = ~
//

{[W.] T[WJM + [w,] T[w,]b22

(t?)

+ [Wy]T[Wz]b21 + [Wz]T[wV]fi12} d$dy (15.9)

B,z = ~
H

.i{[~r]T[’w13

(e) ‘

+ [WJT [A]&!3 } dz dy (15.10)

l?,, = ~
//

–j{[~]T[J%]~31

(e)

+ [A]T[wg]b32}dx dy (15.11)

HBzz=~ ‘ {[,J]T[~]b33} dx dy (15.12)

(e)

where aij and b,j are elements of matrices [A] and [B] in (6),

and the integration results are easily obtained.

III. APPROACHES FOR SOLVING EIGENVALUE EQUATIONS

A. Calculation of Cut-off Frequencies of Waveguides

In the case of cut-off, i.e., the phase constant ~ = O, (14)

takes the form of

which is the eigenvalue equation with cut-off frequencies as

the eigenvalues. For general materials, the properties of which

are independent of frequency, solving the equation is simple

and straightforward. However, it is not easy to solve it for

the ferrite loaded waveguides because, as mentioned above,

the permeability tensor is dependent not only on the applied

dc magnetic field but also on the operating frequency. This

means that the matrix elements of (16) are functions of k:.

Therefore, (16) is a transcendental eigenvalue equation. A

commonly used method for solving this equation is first to

compute the frequency at a specified value of (K/U), and then

to calculate the applied field based on the calculated frequency
and specified value of (K/#). This procedure is opposite to

the practical application. The practical approach would be to

solve for frequencies at the specified applied fields. In order

to follow the more intuitively practical approach we proposed

a iteration technique, which has been successfully used in

FEM solutions for nonlinear optical waveguides and electrical

resonant cavities [15]. [16].

Starting with [LL]= EII] (the value of the permeability tensor

when dc magnetic field does not exist), one can get the eigen

frequency w(i) = kO[,)c of the ith (i = 1) step by using (16);

then one can obtain the permeability tensor of the ith step,

[p(,)] by using (3) or (4); after substituting it into (16), one
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can get the frequency of the (i+ l)th step, U(i+l) = Ico(i+l)c.

Iteration continu& until the difference between eigenvalues of

the two contiguous steps is less than a given tolerance.

B. Calculation of Phase Constants of Waveguides

1) HO Parallel to the Propagation Direction: When the

applied dc magnetic field is parallel to the wave propagation,

i.e., the z direction, according to (2), (6), and (15), both for

the electric formulation [i.e., G = E in (16)] and magnetic

formulation [i.e., G = H in (6)], we have

=0 (17)

and

B~z = Bzt

= o. (18)

Making a transformation of variables

[9A = ml (19)

Equation (16) becomes

Equation (20) is an eigen equation both for electric and

magnetic fields with (/3/kO)2 as the eigenvalues, by which it

is very convenient to calculate directly phase constants based

on specified frequencies kO = w/c, applied magnetic field HO

and magnetization JWs.

2) Arbitrary-Direction Applied DC Magnetic Field: For an

arbitrary direction of the dc magnetic field, (17) and (18)

are no longer simultaneously valid [i.e., we have (17) for

the H formulation and we have (18) for the E formulation].

Generally, instead of (20), we obtain

[9tl 1~g,l + W) =

A!;)

1[ 1

[9tl

,- Bzzk: [~zl
(21)

where

[

~ At) (A\;) –Btz kg )

1[ 1

9tl
. (21.1)A(p) = ‘~ (A$) –Bzt&)

0 [0] [h]

Obviously, (21) is a quadratic eigenequation, which contains

both /? and /?2. The method widely used for solving this
problem is to reduce this quadratic equation to a linear one

with the matrix order twice the original. However there is

a double penalty to pay for this transformation: it increases

both the computing time and the memory requirement, because

doubling the matrix ‘order usually causes an increase of 23 (=
8) in CPU time for general eigenvalue solvers. Here an

iteration method is proposed, in which A(@) in (21) is

simply used as improving term. The iteration is straightforward

without any transformation, and calculation shows that the

average number of iterations is much less than eight when

drawing a dispersion characteric curve. The procedure is

as follows: substituting a reasonable initial /? (for instance

@/kO = O or 1) used as the ~(i) of the ith step (i = O) into

A(p) of (21), solving the eigenvalue equation with (~/kO)2

as the eigenvalues, one can get /3(i+1) of the (i + 1)tb step.

Iteration does not stop until the difference between (~/kO)2

values of two contiguous steps is less than a given tolerance.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Partially-Filled Ferrite Rectangular Waveguide

As a numerical example, we consider the well-known

partially-filled ferrite rectangular waveguide, shown in Fig. 1.

Ferrite-loaded waveguides are usually used as nonreciprocal

microwave components, in which the ferrite slab or rod is

asymmetrically placed in the waveguide. In order to compare

our results with the published analytical data, the geometry

and parameters are chosen to be exactly the same as those

of [7], [14]: s = a/4, t = 3a/4, ef = 10, ~Msa/c = 0.5,

v%~~ a/c = 0.5. In order to generalize the calculated results
we normalize all qualities related to length by using the

short side of the waveguide, a, and introduce the normalized

frequency ZO = koa = wa/c. The practical frequency
w = &c/a. In the calculation there are 104 triangle elements

and 175 degrees of freedom. Calculation shows no spurious

modes for the frequency -eigenvalue equation, all solutions

are physical except a certain number of zero-eigenvalues, and

the smallest nonzero solution corresponds to the fundamental

mode. For the phase-constant eigenvalue equation, all the

positive solutions are related to the propagation modes, and

the largest eigenvalue corresponds to the (~/kO)2 of the

fundamental modes.

Fig. 3 presents the dispersion characteristics of the three

lowest modes for wave propagation in both the +Z and .

– 2 directions. The applied dc magnetic field is parallel to

the +il direction. The corresponding analytical solutions are

presented by circles and asterisks. As shown in Fig. 3, our

results are in good agreement with the analytical solutions

at lower frequencies for each modes, but a little different at

frequencies much higher than the cut-off frequencies because

of an insufficient number of elements. Our results are very

close to ones shown in Fig. 7 of [14], but the number of

degrees of freedom used here is about half that used in [14].

Figs. 4 and 5 illustrate the variation of phase constants with

the direction of dc field Ho. In Fig. 4 the direction of HO varies

from +x to –x in the Zy plane (0 = 900). It can be seen

that, as expected, the strongest nonreciprocity occurs when
the field is parallel with the x-axis (p = 0° and p = 180°)

and complete reciprocity when the field is parallel with the

y-axis (p = 900). For example, the difference between ~+/lcO

and ~– /kO is about 0.6 near the x-axis but they are equal

near the y-axis for ~0 = 1.1. Fig. 5 presents variation of the

phase constants when the direction of Ho varies from +Z to
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Fig, 3. Dnpersion characteristicsfor the waveguideshown m Fig. 1 with
9=90° andy=OO. Solid line for@+, dashed line for P–. 1,2, and3 for

the fundamental, second and third modes. respectively.
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Fig 4. Variation of phase constants of the fundamental mode with the
dmection (p) of the applied dc magnetic field in the zy plane (6’ = Trn90° ).

Solid line for /~+, dashed line for 6–. 1, 2, 3, and 4 for ~o = 1.1, 1.3, 1.5,
and 1.7. respectively

–z in the X,Z plane (~ = 0° ). It can be seen again that the

strongest nonreciprocity occurs with HO along the x-axis and

complete reciprocity y with HO along the z-axis. Therefore, one

can control wave propagation by changing the direction of the

dc field HO, and by its strength.

B. Discussion cm Convergency

In this paper, iteration approaches are proposed for solving

the linear eigenvalue equation for cut-off frequencies and the

quadratic eigenvalue equation for phase constants with an
arbitrarily-directed dc magnetic field. Here we discuss the

convergency of the latter. From the physical point of view,

any frequency has the corresponding phase constants (~z >0

for propagation modes or /32 ~ O for cut-off and evanescent

modes). From the mathematical viewpoint, the improving term

A(/3) in (21) originates as a part of the equation and is not

artificially added. Therefore (21 ) is naturally convergent. This

has been proved by calculation.

o

x
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1 I
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2 ----
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---

---- -------------- -
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---- ~---
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---- ~--
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100 120 140 160
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Fig. 5. Variation of phase constants of the fundamental mode with the
direction (0) of the applied dc magnetic field in the .rz plane (p = 0° ).

Sohd line for (J+. dashed line for ~–. 1, 2, 3, and 4 for k. = 1.1, 1.3, 1.5,

and 1.7, respectively.
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,

, I
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Io.8~
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Number of Iterations, N

Fig. 6. Influence of the imtial value (/3/k~ )Inltial on convergency. Solid

line for ~c = 15, dashed line for ~o = 1.1, both for the fundamental mode.

1: (B/kO)initial = 00>2: (@/kO)initial = 10, 3: (P/kO)initial = 2.0, 4:

(P/kO)initi~ = 30

Of course, convergent speed, i.e., the number of iterations

required, depends on the initial ,8 value and the required

tolerance as well as the mode and frequency. Fig. 6 shows

the number of iterations, N, with different initial P values for

the first mode and two specified frequencies %0 = 1.1 and 1.5,
from which it can be seen that fewer iterations are required:

● when the frequency is well above cut-offl

@the closer the initial ,b is to the final value; and

* the larger the tolerance is.

In our calculation the initial f?/kO is set to be 1.0, the

tolerance is set to be 10–4, the number of iterations is usually

less than 8. The number of iterations will decrease by 1/4-1/3

if the tolerance is increased up to 10–3. It should be pointed

that when a set of data is computed for drawing a continuous

curve, if the calculated ,L?of a point is used as the initial ~

of the next point, calculation shows that, the average iteration

time will be sharply reduced. Table I presents the number of
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TABLE I
NUMBERS OF ITERATIONSAND AVERAGE VALUES FOR THREE CURVES

Point No. 12345678910111213 I Average

Curve 1 in Fi~.3 I 1053322222 1 3.2

Curve 1 in Fi~.4 \ 422222122 2 2 2 21 2.1

Curve 1 in Fi~.5 111222222 2 2 1 1 1.6

iterations and the average values for drawing the three curves

in Figs. 3–5, respectively, from which it can be seen that the

average number of iterations is reduced to 2–3.

It is well-known that transforming a quadratic eigenvalue

problem to a linear one (if it is possible) always causes the

matrix order to double, which always results in an 8 times

increase in CPU time for general eigenvalue solvers. That

doubles the cost of the method with not only more memory but

also more computing time. The iteration approach proposed

in this paper needs much less CPU time and no additional

memory. Therefore this is a more economic and effective

method.

Finally it is pointed out that it is not necessary to develop

two computer codes separately for (20) and (21), because the

latter includes the former in the case of the dc magnetic field

in the propagation direction. In this circumstance A(/3) = O

and no iterations are required. This is can be seen from the

third set of data in Table I.
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V. CONCLUSION

In this paper, FEM formulations with edge elements for

the analysis of ferrite loaded waveguides with an ttrbitrarily-

directed dc magnetic field are presented. The formulation for

the case where the dc field is parallel to the direction of

propagation is direct and convenient. In order to deal with

the frequency dependence of the permeability tensor in the

frequency-eigenvalue equation and the quadratic eigenequa-

tion of phase constants for arbitrarily-directed static magnetic

field, the iteration approaches are proposed. Calculation for the

classic waveguide example proved the accuracy and efficiency

of the formulation and approach.
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