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Finite-Element Method with Edge
Elements for Waveguides Loaded with
Ferrite Magnetized in Arbitrary Direction

Lezhu Zhou and Lionel E. Davis, Fellow, IEEE

Abstract—In this paper, finite-element method (FEM) formu-
lations with edge elements for directly calculating the phase con-
stants of ferrite-loaded waveguides with arbitrarily magnetized
directions are presented. Dispersion characteristics are calculated
for the partially-filled ferrite rectangular waveguide structure,
where the dc field is in any arbitrary direction including parallel
to any of the three axes. The variation of phase constants with the
direction of dc magnetic field is illustrated. In order to solve the
quadratic eigenvalue equation, which appears in the case where
the magnetized direction is not parallel to the propagation, a
simple and effective approach is proposed with no increase in
the size of the matrices.

I. INTRODUCTION

T IS well-known that traditional microwave guides loaded

with ferrite materials are used in a number of microwave
devices, such as phase shifters, resonators, circulators and
tunable filters [1], [2]. Recent research has demonstrated
that coupled planar waveguides and other structures loaded
with ferrite layers magnetized parallel or perpendicular to the
direction of wave propagation exhibit behavior, which might
be used for novel microwave components at higher frequencies
[31-[6]. Therefore it is necessary to develop a method for the
analysis and design of these kinds of devices with arbitrary
magnetization direction.

The feature of ferrite materials is that the permeability is a
tensor, which always depends on the operating frequency and
applied dc magnetic field. This results in difficulties of analysis
and calculation. Analytic solutions are known only for a few
simple geometry structures, such as rectangular and circular
waveguides with ferrite slab or rod, and the dc magnetic field
is limited to the wave-propagation or basic coordinate-axis
directions {[7], [8]. For structures with arbitrarily magnetized
ferrite numerical methods are necessary, and in any case a
generally applicable approach is desirable.

The finite-element method (FEM) is an effective and ac-
curate numerical method suitable for complex geometry and
material properties, which has been widely used in this area.
Konrad first proposed a three-component variational formu-
lation for anisotropic media [9]. Its eigenvalues and eigen-
vectors correspond to the modal eigenfrequencies and three-
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component vector fields of waveguides. Wang and Ida suc-
cessfully applied this formulation with edge clements to study
the resonant frequencies of ferrite loaded cavities [10]. The
so-called spurious mode interference, which usually occurs in
FEM with vector variational formulation, has been eliminated
by using edge elements or other approaches [11]. However, the
formulation with frequencies as the eigenvalues is not con-
venient for solving waveguide problems. Therefore methods
of directly calculating phase constants have appeared in the
recent literature. Dillon, Gibson, and Webb applied FEM with
covariant projection elements to the analysis of ferrite loaded
waveguides, where the applied dc magnetic field is parallel to
the propagation direction [12]. Anderson and Cendes published
a vector finite solution of ferrite loaded waveguides, where
the dc magnetic field is parallel or transverse to the direction
of propagation [13]. Their method reduced the quadratic
eigenvalue equation to a linear one, but not quite twice as large.
It may also be pointed that Angkaew, Matsuhara, and Kumagai
analyzed the waveguide with transversely magnetized ferrite
early in 1987 [14]. But they used their own variational function
and shape functions with four field components (ey and hy)
and more degrees of freedom than others.

In this paper, FEM formulas for both E and H fields with
edge elements for directly calculating the phase constants of
ferrite loaded waveguides with arbitrarily magnetized direction
are presented for the first time. The dispersion characteristics
are calculated for an example structure, where the dc field
is arbitrarily directed as well as paraliel to the three axes.
In order to solve the quadratic eigenvalue equation, which
appears in the case of the magnetized direction not parallel to
the propagation, a simple and effective iteration approach is
proposed with no increase in the size of the matrices.

II. Basic FORMULATIONS

A. Permeability Tensor of Arbitrarily-Magnetized Ferrite

Ferrite is a kind of anisotropic material, in which the
magnetic induction B is not parallel to the magnetic field H.
The relationship between them can be expressed in terms of
a permeability tensor, i.e.,

B = po[u|H. 1
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When the applied dc magnetic field is parallel to the z-axis,
the relative permeability tensor is given by

B =gk 0
Wl=1|js n 0 )
0o 0 1
with
p=1+x
2
poy” Ho M,
e - @1
N LT (2.2)

Py HG — w?

where M, and ~ have their usual meanings [7].

Now assuming the applied dc field H, is directed along an
arbitrary direction, i.e.. (H,, 2) = 8, (Hgyy, X) = ¢ as shown
in Fig. 1. it can be proved by using coordinate transformation
that B = u,[u|H remains valid. but [x] become a full matrix
of the form:

M1l p12 pH13
6] = |21 po2  pos3 3)
H31  M32 33

where
p11 = p{cos? 8 - cos® @ +sin? ) +sin® 0-cos? ¢ (3.1)
iz = (1 — ) sin? 6 - sin @ - cos @ — jk cos (3.2)
piiz3={(1—p)sin @-cos §-cos p+ jrsinf-sin o (3.3)
po1 =(1 — p) sin? @ -sin ¢ - cos ¢ + jk cos 6 (3.4)
paa = p(cos? 6 - sin® ¢ + cos? ) +sin? 6 -sin? ¢ (3.5)
pzs = (1~ p) sin @ -cos 8 -sin ¢ — jk sin 6 -cos ¢ (3.6)

(3.7)
(3.8)
(3.9

par ={(1 — p) sin 6 - cos 8 - cos ¢ — jk sin 6 - sin ¢
paz =(1 — ) sin 6 - cos 8 -sin ¢ + jk sin 6 - cos
tss = 4 sin? @ + cos? 4.

Obviously, the above expression is in agreement with (2) when
H, || z,i.e., 8§ = 0°. When H,, is in the zy plane, i.e., § = 90°,
and when H, is in the zz plane, i.e., ¢ = 0° it has the forms,
respectively

k] =
—usin2g0+c082<p (I1—p)singp-cos @ jr-sin @
(1—-p)sinp-cos 1 c082<p—|—sin2cp —JK - COS @
i —jk -sin @ jK - COS @ m
4.1
(1] =
[ cos? 0 +sin® 6 —jrk-cos @ (1 —p)siné-cosb
jk - cos 6 u —jK -sin 6
|(1—p)sinf-cosf jk-sinf 1 sin? 6 4 cos? 6

(4.2)

Equation (4.2) is identical to (2.51) in [2]. It should be pointed
that the permeability tensor (3), generally speaking, is full and
complex, and the inverse matrix also is full and complex.

® IHoxy

Fig. 1. Partially-filled ferrite rectangular waveguide cross section with
applied dc magnetic field in an arbitrary direction.

B. Finite-Element Formulas with Edge Elements

We consider a waveguide loaded with ferrite of the relative
permeability tensor of the (3) and assume that the EM fields in
the waveguide vary as exp [j(wt — 3z)]. The applied magnetic
field is assumed to be along an arbitrary space direction. From
Maxwell equations, the following vectorial wave equation and
corresponding variational function can be obtained in the form

v x ([4] v xG) = k2[B]G =0 (5)
and
F(G) = G)*[4 G
(@) //(g){(vx 7 (Al x @)
— k2G*[B|G} dx dy (6)

where k, = w/c is the free-space wave number, s is the
waveguide cross section and the asterisk denotes complex
conjugate, and

(4] ==7111),

[Bl=[y for G=H

[A] = [u] 7Y,

[Bl =¢[I] for G=E (6.1)

In order to discretize the integral equation (6). the cross
section of the waveguide is divided into a finite number of
triangles. In each triangle the material properties are constant
and the magnetic or electric field G(z, y, z) can be expressed
in terms of the field values at the vertices and edges, i.e.,

G(x,y,2) =[Ge(z, Y)X + Gy(z, v)Y + G=(2, y)2]

~exp (—jfz) (7
with
3
Go(m, y) =D guWalz, y) .1
=1
3
Gy(z, y) = > guWylz, y) (7.2)
=1
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3
G.(z,y) = Y guidh(x, )

i=1

(1.3)

where ); is the scalar shape function and defined in terms of
the Cartesian coordinates

o

(1 1 1
X1 X9 I3

R Y2 U3
(41 dia dly} H
dz dzw dzy T
_d3 d3m d3y Y

TiYe — TrY;
2s
Yi — Yk

2s
T — Ty
2s

1 1 1
2s = det 1 X2 T3

Y1 Y2 Y3

®

where

(8.1)

)

where (4, 7, k) = (1,2, 3) or (2, 3, 1) or (3, 1, 2).

Wiz, y) = Welz, )% + Wiy(z, y)y is the vectorial
shape function corresponding to the ith edge and defined in
terms of the scalar shape functions which are related to the
two ends of the edge

Wiz, y) = )\(il)(ma Y) v A2) (z, y)

= Ai2)(z, ¥) V A (2, ¥) ®

where, ¥7 is a gradient operator. The relationship between the
number of vertices and the ends of edges are shown in Fig. 2.
g 18 the z-component of the field G at the ith vertex. g,, is the
linear integral of the field along the ith edge. Components of
the vector W,(z, ) can be written in matrix form, as follows

-Wlw
[Ww]T = | Wi
_W3ac
[doz A1 — diz s
= |dzz A2 — daz A3
| d12A3 — d3p A1
-alaz - bly
= |ags — bay (10.1)
|a3z — b3y
T _ Wiy
[Wy] = W2y
A -W3y
[doy A1 — diyA2
= |da,he — doy s
| d1y A3z — dayg |

811

Fig. 2. The relation between numbers of vertices and ends of edges for a
triangle element.

agy + b2z (10.2)
| 23y + b3z
Qiz [ didjm - djdim
Qiy didjy — djdiy
[ bi } _diwdjy = djediy
where (4, 1) = (1, 2) or (2, 3) or (3, 1). From (7)~(10), one
can also obtain

_aly + blw}

(10.3)

ow,| _ 8Wm]
or | dy
= [b1, b2, b3] 11.1)
O]
I:é'; = [dlrl:a d2$a d3:c] (112)
[%3 = [d1y, day, day)- (11.3)
Equations (7)—(7.3) can also be rewritten as the matrix form
e
G= |G, | exp(—3B2)
._Gz
LARURE
=\ | ] ewi-ien a2
RURFIAY
with
l9:] = (961, 9r2, s3] (12.1)
[9:] =[9:1, 922, gza]”- (12.2)
Taking the curl of (12), we obtain
. oA
iBWy g [55]
o
G=|—_4 _q1Z4
v % iBWs] —j 3w]
v,
2 [‘éﬂ ]
' [[[gt” exp (—jf2). (13)
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Substituting (12) and (13) into the variational function (6),
using the Rayleigh—Ritz procedure, i.e., making it stationary
with respect to all the independent variables g; and g.. the
variational function (6) in the integral form can be discretized
and transformed to a matrix eigenvalue equation with the
frequency squared as the eigenvalue

{ﬁzAﬁ) +BAG + 4D Al + A2 } [[gt] ]
BA%) + 4% A, lg-]

k2 Bt By, [g¢]
B =t Bzz [gz]
where [g¢] and [g.] are column vectors, which consist of all
the independent unknowns gy, and g, of the cross section; the
matrices are sparse but not symmetric, and their elements are

defined as follows:

e o

a4

Jair + W] [W.]ags

~ W, T W,lare — (W' [Wylan tdzdy  (15.1)
ﬁHZ//{PW}mm
[0 s 25
+ Wa]* {a;zy} azg} dz dy (15.2)

w-x [ {5

=3 [ fo {]w

+ [We]" [g—ﬂ agy — [Wa]” [%J as1

— W, [‘”] }dm dy (15.4)

Ag) = . { 8y} ast
{ ] { ] a32} i dy (15.5)

-2 [[{[5]

+ [5;} [Welazs — [g%r[wy]azl

- [%r [Wy]alg} de dy (15.6)
-5 ] 2] [

. [g_ir [Qggﬂ] m} d dy (15.7)

1= [ {G] 5]

(e)

(8] (2] 2 (2]

T
{a/\} {8)\} }da?dy (15.8)
dx
Bu=>_ //{ Wolb11 + [Wy]T Wy ]ba2
(E)
1)214‘[ ] [Wy]blg}dﬂ”dy (159)
Btz—Z// J{IWe]" [A]bis
(e)
]b23}d.17dy (15.10)
zt—z// —H{INT Wb
()
+ [ }bgo}dl‘dy (15.11)
E//{ [Albss} dz dy (15.12)

where a;; and b, are elements of matrices [A4] and [B] in (6),
and the integration results are easily obtained.

III. APPROACHES FOR SOLVING EIGENVALUE EQUATIONS

A. Calculation of Cut-off Frequencies of Waveguides
the phase constant 4 = 0, (14)

_ 42| Be Bz | |[g]

B ko {th B;;:| [[gz]] (16)
which is the eigenvalue equation with cut-off frequencies as
the eigenvalues. For general materials, the properties of which
are independent of frequency, solving the equation is simple
and straightforward. However, it is not easy to solve it for
the ferrite loaded waveguides because, as mentioned above,
the permeability tensor is dependent not only on the applied
dc magnetic field but also on the operating frequency. This
means that the matrix elements of (16) are functions of k2.
Therefore, (16) is a transcendental eigenvalue equation. A
commonly used method for solving this equation is first to
compute the frequency at a specified value of {k/1), and then
to calculate the applied field based on the calculated frequency
and specified value of (x/p). This procedure is opposite to
the practical application. The practical approach would be to
solve for frequencies at the specified applied fields. In order
to follow the more intuitively practical approach we proposed
a iteration technique, which has been successfully used in
FEM solutions for nonlinear optical waveguides and electrical
resonant cavities [15]. [16].

Starting with [1] = u[I] (the value of the permeability tensor
when dc magnetic field does not exist), one can get the eigen
frequency w(;) = ko(,)c of the ith (i = 1) step by using (16);
then one can obtain the permeability tensor of the ith step,
[4()] by using (3) or (4); after substituting it into (16), one

In the case of cut-off, i.e.,
takes the form of

[Agf) Ag)} [gt]}
AE%) A;z [gZ}
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can get the frequency of the (7 + 1)th step, w(i+1) = Ko(it1)C:
Iteration continues until the difference between eigenvalues of
the two contiguous steps is less than a given tolerance.

B. Calculation of Phase Constants of Waveguides

1) M, Parallel to the Propagation Direction: When the
applied dc magnetic field is parallel to the wave propagation,
i.e., the 2z direction, according to (2), (6), and (15), both for
the electric formulation [i.e., G = E in (16)] and magnetic
formulation [i.e., G = H in (6)], we have

AP =4

— A(%)
=0 an
and
Btz =B
=0. (18)
Making a transformation of variables
[9:] = Blg.]- (19)
Equation (16) becomes
A(3)
Btt - "k— [0] ,:[gt%:}
o o] W
2@ (1)
ﬁ) Aﬁ) Atz 2:| [[{]t] (20)
ko Azt Azz - Bzzko [gz]

Equation (20) is an eigen equation both for electric and
magnetic fields with (3/k,)? as the eigenvalues, by which it
is very convenient to calculate directly phase constants based
on specified frequencies &, = w/c, applied magnetic field H,
and magnetization M,.

2) Arbitrary-Direction Applied DC Magnetic Field: For an
arbitrary direction of the dc magnetic field, (17) and (18)
are no longer simultaneously valid [i.e., we have (17) for
the H formulation and we have (18) for the E formulation].
Generally, instead of (20), we obtain
A(3)

Btt - —k%“ [0] [[[gt:!l] + A(,@)
o] [o] %

B\ [AY A [9:]
<’k‘) [Ai? Azz—Bzzkf] [[gz]] @1
where
_ BTAD 4D -Buk)] 4
A0 =5 [(A‘” B2 [ H[gz]] @D

Obviously, (21) is a quadratic eigenequation, which contains
both B and (2. The method widely used for solving this
problem is to reduce this quadratic equation to a linear one
with the matrix order twice the original. However there is
a double penalty to pay for this transformation: it increases
both the computing time and the memory requirement, because
doubling the matrix order usually causes an increase of 2%(=
8) in CPU time for general eigenvalue solvers. Here an

iteration method is proposed, in which A(8) in (21) is
simply used as improving term. The iteration is straightforward
without any transformation, and calculation shows that the
average number of iterations is much less than eight when
drawing a dispersion characteric curve. The procedure is
as follows: substituting a reasonable initial 3 (for instance
B/ko = 0 or 1) used as the ;) of the ith step (¢ = 0) into
A(B) of (21), solving the eigenvalue equation with (3/k,)?
as the eigenvalues, one can get ;1) of the (i -+ 1)th step.
Iteration does not stop until the difference between (3/k,)?
values of two contiguous steps is less than a given tolerance.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Partially-Filled Ferrite Rectangular Waveguide

As a numerical example, we consider the well-known
partially-filled ferrite rectangular waveguide, shown in Fig. 1.
Ferrite-loaded waveguides are usually used as nonreciprocal
microwave components, in which the ferrite slab or rod is
asymmetrically placed in the waveguide. In order to compare
our results with the published analytical data, the geometry
and parameters are chosen to be exactly the same as those
of [7], [14]: s = a/4, t = 3a/4, 5 = 10, yM,a/c = 0.5,
yuoH,a/c = 0.5. In order to generalize the calculated results
we normalize all qualities related to length by using the
short side of the waveguide, a, and introduce the normalized
frequency k, = k.a = wa/c. The practical frequency
w = Eoc/ a. In the calculation there are 104 triangle elements
and 175 degrees of freedom. Calculation shows no spurious
modes for the frequency-eigenvalue equation, all solutions
are physical except a certain number of zero-eigenvalues, and
the smallest nonzero solution corresponds to the fundamental
mode. For the phase-constant eigenvalue equation, all the
positive solutions are related to the propagation modes, and
the largest eigenvalue corresponds to the (8/k,)% of the
fundamental modes.

Fig. 3 presents the dispersion characteristics of the three
lowest modes for wave propagation in both the +Z and
—Z directions. The applied dc magnetic field is parallel to
the +% direction. The corresponding analytical solutions are
presented by circles and asterisks. As shown in Fig. 3, our
results are in good agreement with the analytical solutions
at lower frequencies for each modes, but a little different at
frequencies much higher than the cut-off frequencies because
of an insufficient number of elements. Our results are very
close to ones shown in Fig. 7 of [14], but the number of
degrees of freedom used here is about half that used in [14].

Figs. 4 and 5 illustrate the variation of phase constants with
the direction of dc field H,. In Fig. 4 the direction of H, varies
from 4% to —% in the zy plane (§ = 90°). It can be seen
that, as expected, the strongest ponreciprocity occurs when
the field is parallel with the z-axis (¢ = 0° and ¢ = 180%)
and complete reciprocity when the field is parallel with the
y-axis (¢ = 90°). For example, the difference between 37 /k,
and 8~ /k, is about 0.6 near the z-axis but they are equal
near the y-axis for k, = 1.1. Fig. 5 presents variation of the
phase constants when the direction of H, varies from +% to
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Fig. 3. Daspersion characteristics for the waveguide shown 1n Fig. 1 with
6 = 90° and ¢ = 0°. Solid line for 37, dashed line for 8. 1, 2, and 3 for
the fundamental, second and third modes, respectively.

0'80 20 40 60 80 100 120 140 160

<H0xy,x>= ¢ (degree)

Fig 4. Variation of phase constants of the fundamental mode with the
direction () of the applied dc magnetic field in the xy plane (6 = rm90°).
Solid line for A%, dashed line for 8~. 1, 2, 3, and 4 for ko = 1.1, 1.3, 1.5,
and 1.7. respectively

—2 in the 2z plane (¢ = 0°). It can be seen again that the
strongest nonreciprocity occurs with H,, along the z-axis and
complete reciprocity with H, along the z-axis. Therefore, one
can control wave propagation by changing the direction of the
dc field H,, and by its strength.

B. Discussion on Convergency

In this paper, iteration approaches are proposed for solving
the linear eigenvalue equation for cut-off frequencies and the
quadratic eigenvalue equation for phase constants with an
arbitrarily-directed dc magnetic field. Here we discuss the
convergency of the latter. From the physical point of view,
any frequency has the corresponding phase constants (3% > 0
for propagation modes or 3% < 0 for cut-off and evanescent
modes). From the mathematical viewpoint, the improving term
A(B) in (21) originates as a part of the equation and is not
artificially added. Therefore (21) is naturally convergent. This
has been proved by calculation.

16F N . ]

1

1.2r ~. - b

B /k

0'80 20 40 60 80 100 120 140 160

<H, , z >= 0 (degree)

Fig. 5. Variation of phase constants of the fundamental mode with the
direction (#) of the applied dc magnetic field in the zz plane (¢ = 0°).
Solid line for 87, dashed line for 4. 1, 2, 3, and 4 for k, = 1.1, 1.3, 1.5,
and 1.7, respectively.

0. . . . . .
8 2 4 6 8 10 12

Number of Iterations, N

Fig. 6. Influence of the imtial value (8/ko) a1 On convergency. Solid
line for k, = 1 5, dashed line for k, = 1.1, both for the fundamental mode.
L (B/ko)initial = 0.0, 2: (8/ko)initial = 10, 3: (8/koinitial = 2.0, 4
(8/ko)initial = 3-0

Of course, convergent speed, i.e., the number of iterations
required, depends on the initial § value and the required
tolerance as well as the mode and frequency. Fig. 6 shows
the number of iterations, N, with different initial 8 values for
the first mode and two specified frequencies &, = 1.1 and 1.5,
from which it can be seen that fewer iterations are required:

* when the frequency is well above cut-off;

* the closer the initial 3 is to the final value; and

* the larger the tolerance is.

In our calculation the initial 3/k, is set to be 1.0, the
tolerance is set to be 1074, the number of iterations is usually
less than 8. The number of iterations will decrease by 1/4-1/3
if the tolerance is increased up to 1073, It should be pointed
that when a set of data is computed for drawing a continuous
curve, if the calculated 3 of a point is used as the initial 3
of the next point, calculation shows that, the average iteration
time will be sharply reduced. Table 1 presents the number of
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TABLE 1
NUMBERS OF ITERATIONS AND AVERAGE VALUES FOR THREE CURVES

Point No. [ 123456789 10 11 12 13 | Average
Curve 1 in Fig.3 1053322222 1 3.2
Curve 1 in Fig.4 422222122 2 2 2 2 2.1
Curve 1 in Fig.5 111222222 2 2 1 1 1.6

iterations and the average values for drawing the three curves
in Figs. 3-5, respectively, from which it can be seen that the
average number of iterations is reduced to 2-3.

It is well-known that transforming a quadratic eigenvalue
problem to a linear one (if it is possible) always causes the
matrix order to double, which always results in an 8 times
increase in CPU time for general eigenvalue solvers. That
doubles the cost of the method with not only more memory but
also more computing time. The iteration approach proposed
in this paper needs much less CPU time and no additional
memory. Therefore this is a more economic and effective
method,

Finally it is pointed out that it is not necessary to develop
two computer codes separately for (20) and (21), because the
latter includes the former in the case of the dc magnetic field
in the propagation direction. In this circumstance A(3) = 0
and no iterations are required. This is can be seen from the
third set of data in Table I

V. CONCLUSION

In this paper, FEM formulations with edge elements for
the analysis of ferrite loaded waveguides with an arbitrarily-
directed dc magnetic field are presented. The formulation for
the case where the dc field is parallel to the direction of
propagation is direct and convenient. In order to deal with
the frequency dependence of the permeability tensor in the
frequency-eigenvalue equation and the quadratic eigenequa-
tion of phase constants for arbitrarily-directed static magnetic
field, the iteration approaches are proposed. Calculation for the
classic waveguide example proved the accuracy and efficiency
of the formulation and approach.
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